Dilatation thermique anormale et caractere en couches des metavanadates MV_2O_6 (M = Ca, Cd, Zn, Mg, Pb)

P. GARNIER ET D. WEIGEL

Laboratoire de Chimie-Physique du Solide, (ERA au CNRS n° 456), Ecole Centrale des Arts et Manufactures, Grande Voie des Vignes, 92290, Chatenay Malabry, France

Received October 5, 1982

The variations of cell parameters and thermal expansion tensors of metavanadates MV_2O_6 have been measured in the range 77–295 K. The thermal expansion anisotropy is characteristic of layer structures especially for brannerite-type structures (M = Cd, Zn, Mg); this anisotropy is explained by the presence of [VO₃] polyhedra, such as occur in the V₂O₃ layer structure. For CaV₂O₆ the variation of thermal expansion as a function of temperature is abnormal: peaks, typical of a diffuse transition, are observed at 260 K for $\alpha_1(T)$ and $\alpha_3(T)$ curves. The temperature anomaly is reduced when cadmium is substituted for calcium.

I. Introduction: Comparaison et classification structurale des métavanadates

L'oxyde V_2O_5 présente une structure en couches qui se traduit par une dilatation thermique très anisotrope (1) et par la possibilité de préparer des bronzes $\text{Li}_xV_2O_5$ dont la structure est proche de celle de V_2O_5 (2). Ces caractéristiques ont conduit certains auteurs à essayer V_2O_5 comme matériau pour la cathode dans les batteries au lithium (3) ainsi que V_6O_{13} dont la structure se déduit de celle de V_2O_5 par un cisaillement (4).

 V_2O_5 forme avec un grand nombre de monoxydes MO des composés définis MV_2O_5 dont des dérivés lacunaires de la forme $M_{1-x}V_{2-x}Mo_{2x}O_6$ sont actuellement étudiés comme catalyseurs sélectifs pour l'oxydation partielle d'oléfines (5). Dans V_2O_5 le vanadium est situé au centre d'une pyramide à base carrée (6); les 5 distances V-O valent de 1,58 à 2,02 Å. Ces pyramides sont associées par des arêtes ou des sommets pour former des couches, liées entre elles par une sixième liaison V-O₆ de type de Van der Waals de 2,78 Å (cf. fig. 1).

Le même polyèdre de coordination du vanadium, plus ou moins déformé, existe également dans la plupart des métavanadates MV_2O_6 pour lesquelles les cinq distances V-O valent de 1,61 à 2,11 Å et la sixième V-O₆ de 2,46 à 3,68 Å (cf. tableau I). L'agencement de ce polyèdre conduit, sous la pression atmosphérique,¹ à diverses structures que l'on peut classer en fonction de la forme et de l'agencement du polyèdre de coordination du vanadium.

1. Les structures de type Brannerite

Elles cristallisent dans les systèmes ¹ Sous hautes pressions les structures obtenues sont du type Columbite (7).

FIG. 1. Agencement des polyèdres de coordination du vanadium dans V_2O_5 .

monoclinique ou triclinique avec 2 motifs MV_2O_6 par maille. Selon la longueur de la liaison V-O₆ et la forme du polyèdre [VO₅] on peut considérer 2 sous-ensembles.

(a) Structure de type Brannerite, proprement dite ou peu déformée. Cette structure observée pour M = Mg, Cu, Zn, Mn, Cd (phase β) est représentée sur la figure 2a (5, 8-11): nous la noterons B_1 . Elle diffère très légèrement de la structure de la Brannerite ThTi₂O₆ (12) par le fait que le titane est au centre d'un octaèdre presque régulier (les six liaisons Ti–O valent de 1,83 à 2,20 Å) alors que dans les métavanadates la liaison V–O₆ est nettement plus longue que les cinq autres comme pour V₂O₅ (cf. tableau I): le vanadium est donc au centre d'une pyramide à base carrée. Cette liaison traduit l'existence d'un aspect anisotrope, les couches étant cependant "brisées" par les ions M^{2+} contrairement à celles de V₂O₅.

(b) Structure de type Brannerite très déformée (appelée ici B_{II}). Cette structure est celle de CdV₂O₆ α et de CaV₂O₆ (11). Elle est caractérisée par un allongement considérable de la liaison V-O₆ (3,57 et 3,68 Å, respectivement); le vanadium est alors situé au centre d'une bipyramide à base triangulaire (cf. figure 2b et tableau I). L'angle β de la maille monoclinique est très inférieur à celui de la structure B_{I} .

2. Structures de symétrie orthorhombique

Elles sont observées pour M = Pb, Hg,

TABLEAU I

Données structurales et distances interatomiques (Å) des métavanadates (pour PbV₂O₆ il y a 2 sites pour le vanadium correspondant à 2 séries de distances V–O)

PbV_2O_6	CaV_2O_6	CdV ₂ O ₆	CdV_2O_6	ZnV_2O_6	MgV_2O_6	V_2O_5	
(13)	(11)	(11)	(11)	(10)	(8)	(6)	
9.77	10.06	9.79	9.365	9.242	9.279	11.510	a(Å)
3.68	3.673	3.61	3.568	3.522	3,506	3.563	b (Å)
12.71	7.038	7.02	6.956	6.574	6.730	4.369	<i>c</i> (Å)
	104.8	103.76	112.15	111.55	111.77		β(°)
1.65 - 1.61	1.68	1.68	1.68	1.70	1.671	1.58	V ₁ - O ₁
1.67 - 1.72	1.61	1.75	1.69	1.68	1.666	1.78	$V_1 - O_2$
1.93 - 1.92	1.90	1.88	1.87	1.83	1.853	1.88	$V_1 - O_3$
1.93 - 1.92	1.90	1.88	1.87	1.83	1.853	1.88	V ₁ -O ₄
2.06 - 2.06	1.97	1.98	2.09	2.10	2.111	2.02	V1-05
2.73 - 2.57	3.68	3.57	2.46	2.54	2.671	2.78	$V_1 - O_6$
} neufs distances	2.34	2.19	2.22	1.98	2.02		M -O ₂
J de 2.536 à 2.904	2.35	2.28	2.32	2.06	2.199		М -О ₁
1.32	1.06	1.03	1.03	0.83	0.78		r _M 2+
Pnma	C2/m	C2/m	C2/m	C2	C2/m		GSS
2×228.8	251.4	242.	216.	199.2	203.1		V(Å ³)
-	1.90 1.97 3.68 2.34 2.35 1.06 <i>C2/m</i> 251.4	1.88 1.98 3.57 2.19 2.28 1.03 <i>C</i> 2/ <i>m</i> 242.	1.87 2.09 2.46 2.22 2.32 1.03 <i>C</i> 2/ <i>m</i> 216.	1.83 2.10 2.54 1.98 2.06 0.83 <i>C</i> 2 199.2	1.853 2.111 2.671 2.02 2.199 0.78 <i>C2/m</i> 203.1	1.88 2.02 2.78	$V_1 - O_4$ $V_1 - O_4$ $V_1 - O_5$ $V_1 - O_6$ $M - O_2$ $M - O_1$ $r_{M^{2+}}$ GSS $V(Å^3)$

FIG. 2. Projection sur le plan (**a**, **c**) de la structure des métavanadates type $B_{I}(a)$ et $B_{II}(b)$ et orientation des axes principaux du tenseur de dilatation.

Sr, et Ba (13-16) et comportent 4, 6, ou 8 motifs par maille. Nous retrouvons encore dans certaines le polyèdre $[VO_5]$ associé à un aspect en couches partiel de la structure.

3. Influence du rayon ionique du cation M^{2+} sur la structure des métavanadates.

Le tableau I met en évidence une corrélation entre la structure des métanavadates et le rayon ionique de l'ion M^{2+} .

—Pour des rayons petits (entre 0,70 et 1,03 Å environ) la structure obtenue est B_1 .

—Pour 1,03 et 1,06 Å nous observons la structure B_{II} .

—Pour les gros cathions $(1,12 \text{ Å} \le r_{m^{2+}} \le 1,43 \text{ Å})$ la structure est de symétrie orthorhombique.

Pour les valeurs intermédiaires nous observons un polymorphisme: $CdV_2O_6 (r_{Cd^{2+}} = 1,03 \text{ Å})$ présente les structures B_I et B_{II} et $H_gV_2O_6 (r_{Hg^{2+}} = 1,12 \text{ Å})$ possède soit la structure B_I soit une structure orthorhombique (14).

II. Anomalie de la dilatation thermique de CaV_2O_6 et des solutions solides $Ca_{1-x}Cd_xV_2O_6$

L'évolution des paramètres cristallins de CaV₂O₆ présente une anomalie au dessous de 300 K (17) qui se traduit par des pics sur l'évolution des coefficients principaux de dilatation thermique en fonction de la température. Nous avons étendu cette étude aux solutions solides Ca_{1-x}Cd_xV₂O₆, Cd V₂O₆ α étant isomorphe de CaV₂O₆ (11). Nous avons préparé par réaction à l'état solide, à 650°C dans l'air des composés correspondant aux compositions x = 0, x = 0.05, x = 0.25, et x = 0.50. La variation des paramètres cristallins en fonction de x suit la loi de Vegard, excepté une légère anomalie sur c (cf. tableau II) (11).

Les paramètres cristallins ont été affinés, à partir des diagrammes de diffraction des rayons X sur poudre, à 19 températures pour x = 0 et 9 températures pour les autres compositions (cf. figures 3 et 4). Pour CaV₂O₆, a décroit entre 77 K et 300 K pour croitre aux températures supérieures et c croit très rapidement aux basses températures puis plus lentement au dessus de 300 K. La fonction $\beta(T)$ présente également un changement de pente à 300 K.

Les évolutions en fonction de la température des coefficients principaux de dilatation thermique et de l'orientation de la quadrique caractéristique sont représentées sur les figures 5 et 6. Les courbes $\alpha_1(T)$ et $\alpha_2(T)$

TABLEAU II Paramètres cristallins de $Ca_{1-x}Cd_xV_2O_6$ en fonction de la composition à 295 K

<i>x</i>	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	β(°)	V(Å3)
0	10.0479	3.6713	7.0313	104,85	250,71
0.05	10.0344	3.6685	7.0350	104,78	250,39
0.25	9.9643	3.6640	7.0416	104,54	248,17
0.50	9.8950	3.6399	7.0396	104,28	245.70
1 (11)	9,79	3.61	7.02	103,76	242

FIG. 3. Evolution du paramètre a de la maille cristalline de $Ca_{1-x}Cd_xV_2O_6$ en fonction de la composition et de la température.

présentent des pics λ caractéristiques de modifications structurales continues. Cependant aucun pic de structure n'a été ob-

FIG. 4. Evolution des paramétres b (Å), c (Å), et β (°) de la maille cristalline de Ca_{1-x}Cd_xV₂O₆ en fonction de la composition et de la température.

FIG. 5. $Ca_{1-x}Cd_xV_2O_6$: Evolution des coefficients principaux de dilatation thermique, pour diverses compositions, en fonction de la température.

servé sur les diagrammes de diffraction sur poudres. Ce comportement est analogue à celui de V_2O_3 qui présente vers 500°, une transition de second ordre sans changement apparent du réseau cristallin, à laquelle sont associées des anomalies sur la conductivité électrique et la susceptibilité magnétique (cf. références dans (1)).

Dans la phase haute température (T > 300 K) la direction α_1 de grande dilatation ($\alpha_1 \sim 28.10^{-6}$ K⁻¹) est perpendiculaire au

FIG. 6. $Ca_{1-x}Cd_xV_2O_6$: Orientation de la quadrique représentative du tenseur de dilatation thermique.

plan (**b**, **c**) c'est à dire au plan parallèle aux chaines et contenant les ions V⁵⁺: parallèlement à la direction α_1 la seule cohesion de la structure est celle des liaisons ioniques Ca-O₁, les liaisons V-O₆ étant beaucoup trop faibles. Les directions de faible dilatation sont parallèles aux chaines (α_2) ou aux couches résiduelles (α_3).

La substitution du calcium par le cadmium abaisse la température de l'anomalie qui a lieu à 250 K pour x = 0.05 et n'est plus observée au dessus de 77 K pour x = 0.25 et x = 0.5 (cf. figs. 3-6).

A 295 K les structures de CaV₂O₆ et Cd $V_2O_6\alpha$ sont isomorphes (11) mais la comparaison des données structurales (cf. tableau I et fig. 2b) montre qu'elles se différentient essentiellement par la position de l'oxygène O₂. Dans CaV₂O₆ les 2 liaisons Ca-O₁ et Ca-O₂ sont presque identiques (2,35 et 2,34 Å) et correspondent à la somme des rayons ioniques; dans $CdV_2O_6\alpha$ la liaison $Cd-O_2$ (2,19 Å) est beaucoup plus courte que la liaison Cd-O₁ (2,28 Å). La liaison M-O₂ plus courte dans CdV_2O_6 que dans CaV_2O_6 est d'ailleurs compensée par un allongement de la liaison V_1 - O_2 (1,75 au lieu de 1,61 Å) de telle sorte que la somme des liaisons $M-O_2$ et O_2-V_1 sont identiques dans les 2 composés (3,95 et 3,94 Å).

La direction de la liaison $M-O_2$ est voisine de l'axe c, on peut donc penser que la contraction importante de c au dessous de 300 K doit correspondre à une diminution de la longueur de la liaison $Ca-O_2$. Dans CdV_2O_6 la transition n'a pas lieu, probablement parce que la liaison $Cd-O_2$ est déjà plus courte que la liaison $Cd-O_1$ dès la température ambiante; dans ces conditions on comprend pourquoi la transition diffuse voit sa température décroitre lorsqu'on substitue le calcium par le cadmium.

III. Dilatation thermique des métavanadates de structure type Brannerite

Nous avons étudié la dilatation thermique de trois composés de ce type: ZnV_2O_6 , MgV_2O_6 et $CdV_2O_6\beta$: cette dernière phase est stable au dessus de 670°C et métastable au dessous. Les paramètres cristallins ont été mesurés entre 77 et 295 K. Les coefficients principaux de dilatation thermique ont été calculés à partir des courbes d'évolution des paramètres dans plusieurs intervalles de température. Les résultats sont rassemblés dans le tableau IV où l'angle φ est l'angle entre l'axe **a** et la direction de grande dilatation α_1 du plan (**a**, **c**). Le tableau III compare les résultats des composés étudiés, à 200 K.

La structure de ces composés (cf. fig. 2) est constituée des pyramides à base carrée

TABLEAU III

Comparaison de la dilatation thermique des métavanadates à 200 K: α_1 , α_2 , α_3 sont les 3 coefficients principaux en 10^{-6} K⁻¹, φ l'angle entre l'axe **a** et la direction α_1 , A l'indice d'asphérisme du tenseur

	V ₂ O ₅	ZnV_2O_6	CdV ₂ O ₆	MgV ₂ O ₆	CaV ₂ O ₆ (200 K)	CaV ₂ O ₆ (400 K)	PbV_2O_6
α1	$49.5(\alpha_c)$	35.5	33.5	36.	57.5	28.	$30.1 (\alpha_c)$
α ₂	$-3.9(\alpha_b)$	5.3	0.5	2.5	3.	7	4.1 (α_b)
α3	$-5.6(\alpha_a)$	-3.5	2.5	1.7	-26.0	6	11.3 (α_a)
$(\mathbf{a}, \boldsymbol{\alpha}_{\mathrm{I}})$		-57.0	-55,6	-56	-80.0	-20	
αv	40	37.3	36.5	40.2	33.5	41	45.5
A(~300 K)	0.75	0.6	0.5	0.55	~0.6	0.40	0.30
V−O ₆ (Å)	2.785	2.54	2.46	2.67		3.68	2.57 et 2.73

TABLEAU IV

DILATATION THERMIQUE DES STRUCTURES MV_2O_6 DE TYPE $B_1 \alpha_1, \alpha_2, \alpha_3, \alpha_v$ sont les coefficients principaux et volumique en $10^{-6}K^{-1}, \varphi$ est l'angle entre l'axe **a** et la direction de α_1 exprimé en degrés, et A est l'indice d'asphérisme mesurant l'anisotropie du tenseur

$T_1 - T_2(\mathbf{K})$	α_1	α_2	α_3	α_v	$\varphi(\mathbf{a}, \boldsymbol{\alpha}_{\mathrm{l}})$	A
		ZnV ₂ O ₆				
80-150	26.7	4.1	-4.3	26.5	-57,6	0.70
150-220	33.3	5.3	-4.2	34.4	-56.9	0.65
220-295	40.7	5.3	-2.7	43.3	-57.1	0.62
		CdV ₂ O ₆	i			
80-120	21.5	-1.0	0.0	20.5	-56.7	0.72
120-160	27.5	-0.8	1.0	27.7	-56.3	0.66
160-210	32.5	0.	2.0	35.0	-55.8	0.61
210-250	34.5	1.5	3.5	40.0	-55.3	0.54
250-295	34.5	3.0	5.5	44.0	- 54.9	0.47
		MgV ₂ O ₆	5			
77-120	23.1	2.0	1.7	26.8	-61.7	0.53
120-170	31.6	2.3	1.4	35.3	- 59.3	0.56
170-220	35.6	2.3	1.7	39.6	-56.2	0.57
220-270	42.6	3.4	1.9	47.9	-54.0	0.56

 $[VO_5]$ reliées entre elles par une arête pour former des chaines en zig-zag de formule $[VO_3]$, parallèles à l'axe **b** comme pour V_2O_5 . La cohésion entre ces chaînes n'est quasiment assurée que par les ions M^{2+} , les liaisons V-O₆ étant de type de Van der Waals.

Pour ces 3 composés la dilatation α_2 , parallèle à l'axe binaire **b** donc aux chaines est faible (entre-1 et $5.10^{-6}K^{-1}$). Ce résultat est analogue à celui observé pour V₂O₅. La dilatation le long des chaines est faible principalement parce que les répulsions entre les ions V⁵⁺ sont minimisées; en effet ces ions ne sont pas en vis à vis de part et d'autre d'une arête mais sont reliés par l'intermédiaire d'un oxygène (liaisons V-O₃ et V-O₄).

Dans le plan (**a**, **c**) la dilatation thermique est fortement anisotrope; la direction de grande dilatation α_1 , identique pour les 3 composés est quasiment parallèle aux liaisons V-O₆ (cf. fig. 2). Cette anisotropie est renforcée par les liaisons M-O qui relient les chaînes: les liaisons M-O₂, parallèles à α_3 sont, pour les 3 composés, plus courtes donc plus rigides que les liaisons M-O₁ parallèles à la direction α_1 de grande dilatation.

Ces résultats sont typiques d'une structure à caractère en couches; un coefficient est élevé (α_1) alors que les autres (α_2 et α_3) sont voisins de zéro ou négatifs. Les couches sont ici formées par les chaines [VO₃] reliées par les liaisons M-O₂; la cohésion entre couches étant assurées par les liaisons M-O₁ et plus faiblement par les liaisons V-O₆. Il reste donc dans ces structures un aspect résiduel de la structure en couches de V₂O₅.

IV. Dilatation thermique de $Pb_2V_2O_6$

Les paramètres cristallins ont été déterminés entre 80 et 660 K. Les valeurs mesurées à 295 K a = 9,7645 Å, b = 3,6634 Å, et c = 12,6952 Å sont proches de celles mesurées précédemment (13). Aucune anomalie n'a été observée dans l'évolution des coefficients principaux de dilatation thermique (cf. tableau V).

Dans la structure de PbV₂O₆ le polyèdre de coordination de V⁵⁺ doit être considéré comme une pyramide à base carrée et non comme un octaèdre déformé (13), la liaison V-O₆ de 2,57 ou 2,73 Å est en effet beaucoup plus longue que les cinq autres (1,61 à 2,06 Å). Le polyèdre de coordina-

TABLEAU V

 PbV_2O_6 ---Coefficients principaux de dilatation thermique et coefficient de dilatation volumique (en $10^{-6}K^{-1}$), et indice d'asphérisme

ΔT	α.	α ₂	α.	$\alpha_{\rm n}$	A
80-200	9,4(1,7)	2,3(2,2)	25,6(1,3)	37,3	0.37
200300	12,3(2,0)	6,0(2,5)	30,4(1,6)	48,7	0.300
300-400	13,1(2,0)	7,0(2,5)	31,5(2,0)	51,6	0.285
400500	13,1(2,0)	7,0(2,5)	31,5(2,3)	51,6	0.285
500-580	13,1(2,5)	7,0(2,5)	31,5(2,9)	51,6	0.285
580-660	13,1(2,5)	7,0(2,5)	31,5(3,0)	51,6	0.285

tion de V^{5+} est quasiment superposable à celui observé pour V_2O_5 et les métavanadates de structure B_I (cf. Section III). Les pyramides sont associées par des arêtes pour former des chaines en zig-zag parallèles à **b**, ces chaines sont liées 2 par 2 par les liaisons V-O₆; enfin la cohésion entre ces doubles chaines est assurée par les ions Pb²⁺ (cf. fig. 7).

Cette description de la structure permet d'interpréter aisément l'anisotropie de la dilatation thermique de PbV_2O_6 .

Comme pour les autres métavanadates le coefficient α_2 mesuré parallèlement aux chaines est faible ($<7.10^{-6}K^{-1}$). Dans le plan (**a**, **c**) la dilatation est beaucoup plus grande suivant l'axe **c** (α_3) c'est à dire parallèlement aux liaisons V–O₆. L'anisotropie est donc également due à l'existence du polyèdre de coordination de l'ion V⁵⁺ qui maintient un résidu des couches de l'oxyde V₂O₅, "brisées" par les ions Pb²⁺; ces derniers, dont la coordination est 9, sont liés de façon isotrope aux chaines voisines et leur contribution à l'anisotropie est négligeable.

V. Synthese des résultats et conclusion sur l'anisotropie des métavanadates

Tous les métavanadates étudiés présen-

FIG. 7. Projection de la structure modélisée de PbV_2O_6 sur le plan (a, c).

FIG. 8. Evolution de l'indice d'asphérisme du tenseur de dilatation thermique des métavanadates en fonction de la température.

tent une dilatation thermique très anisotrope. Celle-ci peut être mesurée par l'indice d'asphérisme d'un tenseur de rang 2 (18):

$$A = \frac{2}{3} \sqrt{1 - \frac{3(\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1)}{(\alpha_1 + \alpha_2 + \alpha_3)^2}}$$

En général cet indice décroit quand la température augmente sauf si le composé présente une transition de phase avec paramètre d'ordre (19) alors l'indice A augmente généralement avec T dans la phase ordonnée, basse température. C'est ce dernier cas qui est observé pour Ca V₂O₆ au dessous de 300 K (cf. fig. 8) et qui confirme l'existence d'une modification structurale continue.

Pour les structures tridimentionnelles, présentant un empilement et une rigidité sensiblement identiques suivant les 3 axes cristallins, l'indice d'asphérisme tend en général vers zéro ou atteind des valeurs faibles (A ~ 0.2 pour des températures plus ou moins élevées selon les composés (19).

Si l'empilement de la structure est très

anisotrope (structures lamellaires ou linéaires: graphite, V₂O₅, polymères semicristallins, . . .) l'indice A décroit quand la température augmente mais l'agitation thermique sera insuffisante pour s'opposer à l'anisotropie de la structure et des liaisons chimiques de l'empilement considéré. Ainsi pour ces structures l'indice d'asphérisme A reste assez élevé même à haute température (~ 0.3 à 0.6). C'est ce qui est observé pour les métavanadates, la valeur limite de l'indice d'asphérisme qui vaut de 0.3 à 0.6 caractérise un aspect anisotrope important de leur structure. Cependant dans les métavanadates les couches sont "brisées" par les atomes M^{2+} , nous observons donc un indice d'asphérisme légèrement inférieur a celui de V₂O₅.

En conclusion la dilatation thermique met en évidence l'anisotropie structurale des métavanadates; cette anisotropie peut conduire à envisager la préparation de composés avec le lithium intercalé comme pour V_2O_5 . De plus pour le métavanadate de calcium l'origine physique de l'anomalie observée doit être élucidé.

Références

1. T. BEGUEMSI, P. GARNIER, ET D. WEIGEL, J. Solid State Chem. 25, 315 (1978).

- 2. A. HARDY, J. GALY, A. CASALOT, ET M. POU-CHARD, Bull. Soc. Chim. Fr., 1056 (1955).
- 3. C. R. WALK ET J. S. CORE, Communication à Electrochemical Society Meeting, Toronto (1975).
- D. W. MURPHY, P. A. CHRISTIAN, F. J. DI SALVO, ET J. N. CARIDES, J. Electrochem. Soc. 126, 497 (1979).
- R. KOZLOWSKI, J. ZIOLKOWSKI, K. MOCALA, ET J. HABER, J. Solid State Chem. 35, 1 (1980).
- 6. H. G. BACHMANN, F. R. AHMED, ET W. H. BARNES, Z. Kristallogr. 115, 110 (1961).
- M. GONDRAND, A. COLLOMB, J. C. JOUBERT, ET R. D. SHANNON, J. Solid State Chem. 11, 1 (1974).
- 8. H. N. NG ET C. CALVO, Can. J. Chem. 50, 3619 (1972).
- 9. D. LAVAUD ET J. GALY, Bull. Soc. Fr. Mineral. Cristallogr. 95, 134 (1972).
- 10. J. ANGENAULT ET A. RIMSKY, C.R. Acad. Sci. Ser. C 267, 227 (1968).
- 11. J. C. BOULOUX, G. PEREZ, ET J. GALY, Bull. Soc. Fr. Mineral. Cristallogr. 95, 130 (1972).
- 12. R. RUH ET A. D. WADSLEY, Acta Crystallogr. 21, 974 (1966).
- 13. B. D. JORDAN ET C. CALVO, Can. J. Chem. 52, 2701 (1974).
- 14. J. ANGENAULT ET A. RIMSKY, C.R. Acad. Sci. Ser. C 266, 978 (1968).
- 15. J. C. BOULOUX, J. GALY, ET P. HAGENMULLER, *Rev. Chim. Miner.* 11, 48 (1974).
- 16. W. FREUNDLICH, A. ERB, M. QUARTON, ET J. PERRAUD, C.R. Acad. Sci. Ser. C 274, 627 (1972).
- 17. P. GARNIER, C.R. Acad. Sci. Ser. C 291, 45 (1980).
- 18. D. WEIGEL, P. GARNIER, ET J. F. BERAR, C.R. Acad. Sci. Ser. C 283, 385 (1976).
- 19. D. WEIGEL, T. BEGUEMSI, P. GARNIER, ET J. F. BERAR, J. Solid State Chem. 23, 241 (1978).